
Sun et al. Microsystems & Nanoengineering            (2021) 7:83 Microsystems & Nanoengineering
https://doi.org/10.1038/s41378-021-00313-7 www.nature.com/micronano

ART ICLE Open Ac ce s s

Novel nondelay-based reservoir computing with a
single micromechanical nonlinear resonator for
high-efficiency information processing
Jie Sun 1,2, Wuhao Yang1✉, Tianyi Zheng1,2, Xingyin Xiong1, Yunfei Liu1,2, Zheng Wang3, Zhitian Li1 and
Xudong Zou1,2,3✉

Abstract
Reservoir computing is a potential neuromorphic paradigm for promoting future disruptive applications in the era of
the Internet of Things, owing to its well-known low training cost and compatibility with hardware. It has been
successfully implemented by injecting an input signal into a spatially extended reservoir of nonlinear nodes or a
temporally extended reservoir of a delayed feedback system to perform temporal information processing. Here we
propose a novel nondelay-based reservoir computer using only a single micromechanical resonator with hybrid
nonlinear dynamics that removes the usually required delayed feedback loop. The hybrid nonlinear dynamics of the
resonator comprise a transient nonlinear response, and a Duffing nonlinear response is first used for reservoir
computing. Due to the richness of this nonlinearity, the usually required delayed feedback loop can be omitted. To
further simplify and improve the efficiency of reservoir computing, a self-masking process is utilized in our novel
reservoir computer. Specifically, we numerically and experimentally demonstrate its excellent performance, and our
system achieves a high recognition accuracy of 93% on a handwritten digit recognition benchmark and a normalized
mean square error of 0.051 in a nonlinear autoregressive moving average task, which reveals its memory capacity.
Furthermore, it also achieves 97.17 ± 1% accuracy on an actual human motion gesture classification task constructed
from a six-axis IMU sensor. These remarkable results verify the feasibility of our system and open up a new pathway for
the hardware implementation of reservoir computing.

Introduction
Recently, emerging sensor applications, such as the

Internet of Things (IoT)1 and ubiquitous sensing, require
sensors with smaller size and lower power consumption,
as well as “edge computing”2 capabilities, to process a
deluge of data locally. These expanding computing
requirements have motivated the creation of new and
specialized computing paradigms to break through the
“von Neumann bottleneck”. Among them, neuromorphic

computing that mimics a biological neural network has
been advocated as a candidate in recent years because of
its high energy efficiency3. As a neuromorphic computing
paradigm, reservoir computing (RC)4–6 was originally a
recurrent neural network (RNN)7–9 framework and is
therefore suitable for temporal information processing.
RC is different from conventional RNNs in that the
weights on the recurrent connections in the reservoir are
not trained; only the output connection weights in the
readout are trained, which makes it possible to drastically
reduce the computational cost of learning. More impor-
tantly, the hardware implementation of RC can be
achieved using a variety of nonlinear dynamic systems
with nonlinearity and fading memory (or short-term
memory). Because a mechanism for adaptive changes is
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not necessary for training, the main two implementation
structures are RC based on numerous randomly inter-
acting nonlinear nodes and a time-delayed nonlinear
system10.
RC based on spatially extended nodes provides efficient

parallel information processing11,12. However, it suffers
from the complexity of hardware implementation. Simple
RC based on a time-delayed nonlinear system possessing
only a single nonlinear node has been proposed. It can
emulate the spatially extended nodes of RC using virtual
nodes temporally extended along with a delayed feedback.
This superiority has recently motivated the search for
hardware implementation using emerging devices, such as
electronic devices13, optical systems14–19, spintronic
devices20, dynamic memristors21–25, and mechanical
resonators26,27. However, the delayed feedback and the
additional masking procedure reduce processing effi-
ciency. Recent studies have aimed to solve this problem by
optimizing the system parameters13,28, such as mask
length and feedback strength, or using different feedback
structures, such as double feedback loops16 and parallel
multiple feedback loops29,30. However, the effect of the
nonlinear characteristics of the device on the performance
of the RC system has rarely been studied. Moreover, an
initial report demonstrated the feasibility of RC with a
single “delay-coupled” nonlinear microelectromechanical
system (MEMS) resonator, and its best classification
accuracy was only 78+2% for the TI-46 recognition
benchmark.
In this work, we propose a novel reservoir computer

structure using a single micromechanical resonator with
hybrid nonlinear dynamics and omitting time-delayed
feedback. Moreover, we focus on the well-known non-
linear dynamics of the micromechanical resonator and
first propose a hybrid nonlinear response (HNL), which
comprises the transient nonlinear response (TNL) and the
Duffing nonlinear response (DuNL). Due to the dynamic
richness of the HNL, time-delayed feedback can be
removed to achieve high-efficiency RC. Furthermore, we
define a self-masking process to replace the traditional
masking procedure to simplify and improve the efficiency
of RC. The self-masking process directly feeds serialized
input data into the reservoir, reshaped by the
e-exponential characteristics of TNL with a certain tem-
poral solution, and then picks up the nonlinear cumula-
tive response at the separation time. Since our mask
procedure utilizes the self-nonlinear characteristics of the
reservoir, the masking procedure and RC are simulta-
neously completed, which is why we call it a self-masking
process.
This allows us to achieve a novel RC architecture using

the HNL with the self-masking process for high-efficiency
temporal pattern classification, such as the Mixed
National Institute of Standards and Technology (MNIST)

handwritten digit task, TI-46 spoken word recognition
benchmark, and human motion gesture recognition task
sensing, from a six-axis inertial measurement unit (IMU)
sensor. To evaluate the memory capacity of our system,
we perform a nonlinear autoregressive moving average
(NARMA) task. The results show that this novel structure
can effectively adjust the nonlinear richness of the system
to adapt to the specific pattern classification task13; it also
reduces system multiparameter optimization difficulties
and simplifies control loop complexities. More impor-
tantly, the simple structure and device compatibility with
MEMS can facilitate the hardware implementation of RC
and promote the emergence of disruptive applications
using MEMS technology in the future IoT era.

Results
Hybrid nonlinear resonator-based RC system
In the time-delayed RC, structural parameters such as

the mask function, the number of virtual nodes, and
feedback strength should be optimized to generate a
sufficiently rich reservoir state, which reduces processing
efficiency. In particular, to obtain a large number of dif-
ferent transient responses to the input, the input signal is
time-multiplexed by a mask function that serves the dual
purpose of serializing the input and maximizing the
effectively used dimensionality of the system. Therefore,
we propose hybrid nonlinear RC with a self-masking
process. The basic principle of our scheme is shown in
Fig. 1a. It is composed of three distinct parts: an input
layer, a reservoir, and an output layer. The serialized input
signals are fed to the reservoir after preprocessing. Then
the self-masking process and nonlinear transformation
are simultaneously realized in the hybrid nonlinear
reservoir. Thus, the reservoir states are sampled through
postprocessing, and the training and test procedures are
implemented using a linear regression algorithm. Com-
pared with time-delayed feedback RC13, we directly seri-
alize the input stream U(t) and feed it into the reservoir,
and different degrees of nonlinear cumulative effects can
be obtained by the self-masking process, which simplifies
the masking procedures and improves the information
processing efficiency.
The concept of HNL we introduce ensures the rich

nonlinear dynamics of the reservoir. Figure 1b shows the
envelope detection result of the HNL oscillation response
of the resonator, which can be roughly divided into four
stages: T1 represents the oscillation starting stage, T2 the
steady-state oscillation stage, T3 the oscillation attenua-
tion stage, and T4 the oscillation resting stage. For
T1–T4, all operate in the Duffing nonlinear oscillation
state of the resonator, but the T1 and T3 stages also
operate in the TNL. We select θ < T (T=T1=T3) for
better state richness due to the HNL we propose. Thus,
the masking procedure in time-delayed RC can be
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replaced with the self-masking process, and the feedback
loop is not necessary. As a result of this simple structure,
the system is capable of generating a sufficiently rich
reservoir state for high-efficiency information processing.

Model analysis of hybrid nonlinear RC
In this hybrid nonlinear RC system, a microelec-

tromechanical clamped–clamped (C-C) silicon beam
resonator is used as the reservoir to nonlinearly map the
input data into a higher-dimensional state space, which
can also be seen as a typical underdamped second-order
oscillation system. This hybrid nonlinear reservoir com-
bines the DuNL characteristics of the resonator31,32 and
its transient exponential nonlinear response character-
istics as a typical second-order oscillation system, which
guarantees the rich nonlinear dynamics of single reso-
nator RC to process the pattern classification tasks. The
resonator is driven and detected by the parallel plate
electrostatic force. A scanning electron microscopic
(SEM) image of the resonator is shown in Fig. 3, and its
displacement can be approximated by the Duffing non-
linear equation:

€xþ 2ξwn _xþ w2
nxþ βx3 ¼ FdðtÞ; ð1Þ

where x, _x, and €x are the displacement, velocity, and
acceleration of the resonator, respectively, wn ¼ 2πfn is
the natural angular frequency of the resonator in its linear
regime, ξ ¼ 1

2Q is the damping ratio, Q is the quality factor,
and Fd is the force per unit mass driving the beam. Note
that β is the coefficient controlling the amount of
nonlinearity in the restoring force and introduces the
Duffing nonlinearity to the equation. In the case of the

C-C beam (Figs. 2e and 3), the value of β can be estimated
by32

β ¼ 32E
p2ρL4A ð2Þ

where E is the silicon Young’s modulus, L is the beam
length, ρ is its density, and A is a constant term. Equation
(2) further indicates that the geometric nature of the
nonlinearity of the resonator depends on the beam length.
Short beams can cause a larger nonlinear restoring force
term than long beams but need a larger excitation
amplitude.
The size information of the (C-C) silicon beam reso-

nator is described in the “Device fabrication” part, which
is designed to satisfy the demands for the appropriate
value of β and Q. To drive the C-C beam to the sufficient
nonlinear region with less energy consumption, an
expected β value of 2.4 × 1022 Hz2 m−2 with an effective
beam length of 500 µm should be determined. If β= 0, the
beam will oscillate periodically in a linear region, and we

can obtain the analytical solution x tð Þ ¼ 1 ± e
�wn
2Qt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

2Qð Þ2
q .

When assuming the initial condition Fd= 0, this
e-exponential term is introduced as the TNL. The HNL
provides sufficiently rich computing dynamics when
mixing the β and e-exponential terms. In addition, the
natural frequency and quality factor also influence the
performance of RC. To maintain a certain memory
capacity, a high quality factor Q >1000 should be
considered, which determines the decay time for the TNL.
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Fig. 1 RC system architecture and hybrid nonlinear phenomena. a Scheme of the hybrid nonlinear resonator-based RC system. The duration
t ¼ τ ¼ θ � N is the total length of the input sequences, θ is the separation time between input signal data, and N is the number of neural nodes.
x tð Þ ¼ f ðUðtÞÞ, f is the hybrid nonlinear function constructed with TNL and DuNL, and the output nodes are linear weighted sums of the reservoir
states, which are given by the value y tð Þ ¼ wTx tð Þ, where w is a vector of weights and y(t) is the target value. The dark brown circles with the label
“TNL” represent the neural nodes of the reservoir, and the light yellow circles represent a series of interconnection “virtual nodes” contained in a
neural node. b Hybrid nonlinear time-domain response of the resonator. Here the input sequence is a periodic sine wave (Vac ¼ 1 V, fd ¼ 184:2 KHz,
t= 0.035 s), and the responding current is recorded by the data acquisition and processing circuit.
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Fig. 2 Nonlinear resonator and RC models. a, b Simulation results of the frequency sweep and amplitude sweep of the resonator. Left: response of
the resonator to frequency sweeping for Q= 4300, polarization voltage Vdc= 30 V, and excitation amplitude Vac= 1 V; right: amplitude sweeping for a
fixed drive frequency of fd= 182 KHz. c, d Open-loop experiment test results of the frequency sweep and amplitude sweep of the resonator under the
same conditions. The optimal driving frequency is fd= 184.2 KHz at the g point, and the resonator natural frequency is fn= 175 KHz. e FEA model of
the beam showing its first mode shape. f–i Time domain response at different frequencies. j Some examples from the MNIST database. k Classification
results of two RC models. The reservoir states are significantly different after the two different models corresponding to the number “4-6-7-9.”
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To further reduce the “anchor loss”, a unique “cross”
anchor design is adopted.
In the hardware implementation of time-delayed RC by

a mechanical oscillator26,27, a high natural frequency and
relatively low value quality factor must be combined for a
higher processing speed t�1

0 ¼ πfn
MQ, whereM is the number

of virtual nodes. Generally, several hundred virtual
nodes28 (M ~ 400) are employed to obtain good perfor-
mance; thus, the system needs a larger driving voltage to
operate in suitable nonlinear states because of the low
quality factor (Q ~ 100). While the number of virtual
nodes M is not needed in the self-masking process, a high
quality factor (Q ~ 4300) can be chosen, which not only
ensures the processing speed but also improves the
nonlinear effect of the TNL.
As mentioned above, the characterization of the non-

linear dynamic response of the beam is crucial since it is
the source of reservoir nonlinearity. A “frequency sweep”
and “amplitude sweep” are common characterization
methods used to analyze the nonlinear response of a
beam; therefore, we construct a numerical simulation of
Eq. (1) to determine several main parameters, which are
used to drive the resonator into an appropriate nonlinear
state for the realization of reservoir state richness, such as
the driving frequency fd and the excitation amplitude.
The Duffing nonlinear frequency/amplitude response

can be observed in Fig. 2a, b, and the nonlinear solutions
to (1) equation of motion have been well studied pre-
viously32. Finite element analysis is performed through
the solid mechanics interface of COMSOL Multiphysics
5.3a to further simulate the dynamic vibration modes of
the beam. Figure 2e shows the first mode shape. More-
over, to ensure that the beam works in a higher signal-to-
noise ratio and stability amplitude output at the specified
drive frequency, the value at the front bifurcation point

(g point) of the frequency hysteresis loop is selected33, as
shown in Fig. 2c. The sweep results of the simulation are
almost the same as the experimental results (Fig. 2c, d),
verifying the feasibility of the constructed model. There-
fore, we can choose suitable parameters and states to
verify our HNL-RC concept.
After determining the key parameters of the beam, we

choose the handwritten digit recognition dataset to
compare the classification performance of the TNL- and
HNL-RC models. We choose a subdataset to test or
optimize the system, which contains 1000 samples with 10
classes randomly selected from the MNIST dataset34:
100 samples for the test set, and 900 samples for the
training set. Preprocessing is performed before the sam-
ples are input to the reservoir to reduce redundant
information of the input signal, as shown in Fig. 4a. The
details are shown in the “Methods” section.
Figure 2k shows the reservoir states corresponding to

the four test samples shown in Fig. 2j for the two different
models. The reservoir states of the two models are sig-
nificantly different, preliminarily verifying the rationality
of the above analysis. The reservoir state is then used as
input to the readout function via ridge regression for
training and classification. The better temporal informa-
tion processing ability of the HNL reservoir is clearly
revealed by recognizing the test dataset; the classification
accuracy rate of the TNL model is 88% and that of the
HNL model is 91%. We thus demonstrate that the novel
RC structure possesses highly efficient information pro-
cessing capabilities and good classification accuracy.

Experimental set-up for single-resonator RC
When verifying the concept of the hybrid nonlinear RC

structure by the simulation, hardware implementation
experiments should be further established to verify the
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Fig. 3 Schematic of the experimental reservoir computer. The experimental set-up of the control system and the scanning electron microscope
(SEM) image of the resonator. The doubly clamped silicon beam resonator can be actuated by the driving electrode (the green solid block) and read
by the sensing electrode (the blue solid circle) simultaneously; polarization voltage Vdc is added to the beam (the black hollow circle with arrow) so
that the parallel plates form a stable potential.
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feasibility of the system. We select the widely studied
MEMS C-C beam resonator, and its nonlinear oscillation
characteristic is verified through numerical simulation
and yields similar results. The SEM image and the
experimental set-up are shown in Fig. 3.
In the experimental set-up of our system, the hard-

ware implementation of the time-delayed RC26 is sim-
plified because of the self-masking process, including
the multiplier applied to multiply input digital data U(t)
with a mask. The adder is used to add the feedback
signal, the shift register, and amplifier for the precise
time delay, which are no longer required in our system.
When the sensing electrode obtains the state response,
an envelope filter (ENV) and a downsampling module
(D-Samples) are set behind the analog-to-digital con-
verter (ADC) because it is convenient to adjust the
response waveform under different nonlinear response
conditions using the LabVIEW program. Therefore,
the experimental set-up of the single resonator RC
better simplifies the complexity compared with the
time-delayed feedback RC and improves the flexibility
and information processing efficiency.

MNIST handwritten digit recognition
The nonlinear cumulative effect during the self-masking

process can be adjusted by varying the parameter θ, θ ¼
n � T n 2 0; 1½ �ð Þ, where T ¼ 2Q

wn
is the decay time of the

resonator. Here we ignore the influence of the decay time
itself because T is not changed under the specific
experimental conditions. According to previous
research13,26 and our simulation analysis, the separation
time value is set at θ � 1

2T ¼ 0:008 s to offer optimal
performance. A parameter optimization trial is designed
by changing the parameter θ with the subdataset, and the
results are shown in Fig. 4b, c. We can obtain a classifi-
cation accuracy of 67% when θ ¼ 1

80T ; increasing the
separation time to 1

2T can potentially achieve 91% accu-
racy, and the accuracy can be lowered to 88% as θ con-
tinues to increase because the steady-state oscillation
stages only have one nonlinear response. Consequently,
we experimentally verify that the richness of the nonlinear
dynamics of the reservoir can be effectively optimized by
varying the separation time θ so that it can be more widely
and effectively applied to different types of classification
tasks with this hybrid nonlinear RC system.
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Fig. 4 Handwritten digit recognition using an HNL resonator-based RC system. a Schematic diagram of handwritten digit classification. b HNL
time-domain response curve of the resonator. The decay time T is equal to T1 or T3 in this curve, and the black circle indicates different separation
times, θ. c Optimal parameter θ experiment results. The plot of the MNIST subdataset classification accuracy versus the separation time θ in Fig. 4b.
The test conditions of the experiment are fd ¼ 184:2 KHz; Vdc ¼ 30 V; Vac ¼ 1 V; T ¼ 0:016 s. d False color confusion matrix showing the predicted
results from the resonator-based RC system versus the target outputs. The color bar on the right side of the figure is the color distribution value after
the normalization operation, and the color blocks in the matrix correspond to it. The classification accuracy is 93%, and the specifics of the training
procedure are detailed in the “Methods” section.
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In addition, after parameter optimization and selection
of specific nonlinear vibration states, it is vital to further
verify that the system is suitable for MNIST tasks with a
large amount of data. We randomly select 25,000 samples
from the MNIST dataset, of which 2500 samples are used
as the test set and 22,500 samples are used as the training
set. When we set the separation time θ ¼ 1

2T , the final
classification accuracy obtained from the RC system is
93%. Figure 4d shows a false-color confusion matrix
highlighting the experimentally obtained classification
results from the RC system versus the desired outputs.

NARMA task to assess memory capacity
Different tasks require different key properties to make

a correct estimation of the target function. While classi-
fication tasks require a strong nonlinear transformation13,
forecasting tasks are strongly dependent on good linear
memory. In the experiments assessing the handwritten
digit recognition task, we demonstrate the high-efficiency
classification performance of the HNL reservoir. Here we
can also verify the memory capacity of this reservoir
through the NARMA benchmark.
NARMA is an acronym for the nonlinear autoregressive

moving average. It is one of the most widely used
benchmarks for measuring memory ability. The para-
meter n represents the correlation between the current
and the previous n data. We choose the task parameter
n= 1, as the nearest-neighbor correlation in this reservoir
framework only exists between the virtual nodes (the
details are presented in “Methods”). Based on the research
results13, we should choose a weak nonlinearity condition
to obtain better forecasting precision by selecting a sui-
table θ, which is not smaller than T. Another option is
reducing the parameter Q to weaken the Duffing non-
linear effect. Formula (3) is the transfer function of the
NARMA1 task, described as follows:

yk ¼ 0:3yk�1 þ 0:05y2k�1 þ 1:5u2k þ 0:1: ð3Þ

where k is the length of the training and test sequences, and
the input u(k) is generated from a uniform density in [0,0.5].
To quantify the performance of the reservoir, the nor-

malized mean square error (NMSE) of the predicted value
versus the value obtained from the NARMA model is used.
The details are described in the “Methods” section. In Fig. 5,
we depict the predicted results versus the target value. The
training set result is NMSE= 5.5e-3, and the test set result
is NMSE= 0.051. Therefore, we achieve memory capacity
in the HNL reservoir but have the potential to realize a
longer memory capacity with the novel architecture.

Motion gesture recognition of six-axis IMU sensor
To further verify the high-efficiency information pro-

cessing ability of the proposed HNL-RC system for the

real sensing of temporal signals and demonstrate its
application potential in real-world scenarios, we design an
application scenario to recognize the different human
motion gestures by our proposed HNL-RC system. Signal
data acquisition from a homemade six-axis IMU sensor,
which integrates commercial three-axis accelerometers
and three-axis gyroscopes, is performed using the func-
tional integrated circuits made by our research group.
Figure 6a, b shows the optical image of the six-axis IMU

sensor and wearing effect and the samples of four out of
eight different motion gestures, which include jumping
jacks, jogging, walking, squatting, stretching, chest
expansion, arm circling, and body circling. Figure 6c
shows the response of the sensor when the subject per-
forms the eight gestures. The preprocessing involves only
smooth filtering with a 30-point window length to reduce
the noise, sampling, and normalization of each waveform.
The final signal contains 600 feature points. We train and
test the system with the motion gesture sample set, which
consists of 8 actions, each repeated 20 times, for a total of
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contains 300 random data sequences. The figure shows the results of
100 intercepted data points, ~T, and the other parameters are the
same as above.
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3 subjects. After obtaining the response of the HNL-RC,
as shown in Fig. 6d, e, tenfold cross-validation is used to
obtain the optimal weight matrix to prevent the system
from overfitting to specific training and test data. The
experimental conditions are the same as above, and the
input voltage streams with 10 different time intervals θ
(0.05T, 0.1T, 0.2T, 0.3T, 0.4T, 0.5T, 0.7T, 0.9T, T, 2T) and
the optimal θ= 0.2T.
Figure 6g shows the best recognition results obtained by

the HNL-RC system; it can achieve (97.17 ± 1)% recog-
nition accuracy for the real sensing signal from the six-
axis IMU sensor. Moreover, if the application scenario is
changed to only the motion gesture recognition of a
certain person, a classification accuracy rate of (99.29 ±
0.5)% can be obtained by using this system. Therefore, the
single resonator-based HNL-RC system is verified as a
new architecture with high efficiency information pro-
cessing ability.

Discussion
The remarkable performance demonstrates the high-

efficiency information processing ability for pattern
recognition tasks and short-term memory capacity for
simple forecasting tasks, which shows the feasibility of our

system and opens up a new pathway for the hardware
implementation of RC. The use of a hybrid nonlinear
system can simplify the hardware reservoir implementa-
tion of RC, and it can improve the computation rate
compared with traditional time-delayed architectures.
To further illustrate the excellent performance and

reliability of the new architecture proposed here, we test
the MNIST handwritten digit recognition benchmark by
our HNL-RC system based on a single resonator, and the
classification accuracy is better than that of memristor-
based RC, which uses 88 memristors24. Furthermore, a
“similar” preprocessing procedure is performed in the
TI-46 spoken word classification task. We construct a
time-delayed feedback reservoir system using the same
resonator to compare the HNL-RC system, and the
experimental results show that the classification accuracy
of the latter (87.4%) is superior to that of the former
(78%). All of these results verify the high efficiency and
accuracy pattern recognition ability of this novel HNL-RC
architecture. The NARMA benchmark verifies the
regression forecasting ability when n= 1 for the memory
capacity, which we will improve in future work. Then we
design a motion gesture recognition experiment to test
the feasibility of the architecture. The sample set is
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composed of a real signal sensed from a six-axis IMU
sensor or three accelerometers. The high classification
accuracy in the “Results” section proves the high-
efficiency signal classification capability, and it also pro-
vides basic performance verification for future “sensing+
computing” integrated device applications in this novel
hybrid nonlinear RC hardware system.

Conclusion
In summary, we propose a novel RC architecture using a

single micromechanical resonator with hybrid nonlinear
dynamics while omitting time-delayed feedback. Based on
this approach, we numerically and experimentally analyze
the nonlinear response of the resonator and first propose
that the hybrid nonlinear dynamics of the resonator
comprise hybrid types of nonlinear responses, transient
responses, and Duffing responses. Moreover, a self-
masking process is defined based on the approach. We
also perform two typical tasks and one real signal sample-
set task sensed by a self-assembled six-axis IMU sensor to
verify its classification capability and memory capacity.
Experimental tests on the MNIST dataset show a high
accuracy of 93% for handwritten digit classification, the
motion gesture classification accuracy of the sample set
composed of three subjects is 98.17%, and the accuracy can
reach 99. 79% when the sample set is composed of only one
subject. For the NARMA task, the results show that the
NMSE is 0.051 when the correlation parameter n equals 1,
which is consistent with the situation wherein only the
nearest-neighbor input is correlated in the reservoir.
Considering the simple structure of our system and the

device compatibility with MEMS, we expect that the
proposed novel structure can facilitate the hardware
implementation of RC and inspire emerging applications
using MEMS technology in the future IoT era.

Methods
Device fabrication
The C-C beam resonator is microfabricated on (100)

p-doped silicon on a glass substrate by the standard
silicon-on-glass process. A device layer thickness of 40 µm
defines the width of the beam; the length, in-plane
thickness, and the gap between the beam and the drive/
sense electrode are chosen to be 500, 6.5, and 3 µm,
respectively, and the electrode length is 360 µm. For more
complex nonlinearity of the resonator, we select the
parallel plate drive and detection mode instead of the
comb drive mode. For the COMSOL simulation diagram
and the actual device diagram of the designed resonator,
please refer to Figs. 2e and 3, respectively.

Device characterizations
The experimental single resonator RC system is realized

with a personal computer (PC), an NI 6366 X Series Data

Acquisition (SDA), and a resonator device with a func-
tional interface circuit (IC). The PC is used to run the
loop of the control algorithm, which is programmed by
LabVIEW 17.0; the SDA is used to realize the function of
an ADC and a digital-to-analog converter, which are 12
bits, and the functional IC contains a trans-impedance
amplifier module, a second amplifier module, and a
bandpass filter module for transforming, amplifying, and
filtering the response signal, respectively.
Suitable driving parameters should be chosen before the

final test with special tasks. A Zurich lock-phase amplifier
is the most commonly used basic performance measure-
ment instrument for MEMS devices. It is used to perform
the open-loop frequency scanning test to determine the
required driving frequency and the effective quality factor.

Mixed National Institute of Standards and Technology
The MNIST database34 is a large dataset that is com-

monly used for training and testing classification capacity.
The database was created by “remixing” the digit samples
written by high school students and employees of the
United States Census Bureau and consists of 60,000
training samples and 10,000 test samples. Each sample in
the dataset is composed of a 28 × 28 gray value matrix.
Preprocessing was performed before the images were fed
into the reservoir, as shown in Fig. 4a. Taking the image of
6 as an example, the original grayscale image of 28 × 28
pixels was trimmed to a 22 × 20 pixel image to reduce
redundant information. Then the 22 × 20 pixel matrix was
transformed into 1 × 440 temporal sequences of input
pulse streams with separation time θ, serializing the N=
440 input signal as the “neural” nodes of the HNL
reservoir.
Finally, we obtained a 440 × 10 readout network that

was used for classification after training. To perform the
MNIST classification function, we need to construct ten
appropriate target functions as ten linear classifiers, each
of which is a polynomial function composed of the opti-
mal weight coefficient vector, yiðtÞ ¼ wT

i xðtÞ with i= 10.
For every test sample, the function is applied to select the
actual digit through a winner-takes-all approach. The
target function is +0 if the handwritten digit does not
correspond to the sought digit and +1 if it does. We called
this postprocessing.

NARMA task
The NARMA task is one of the most widely used

benchmarks for measuring RC memory capacity. The full
name is the nonlinear autoregressive moving average13. It
is used in many other publications in the context of RC,
such as refs. 5,35. For the NARMA task, the input u(k) is
generated from a uniform density in [0,0.5]. Then, after
being normalized, the variable n is a positive integer value
of [1,∞], where a larger n represents a stronger correlation
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between the generated data contexts, which means longer
memory length. The target yk is given by the following
recursive formula:

u kð Þ ¼ rand 0; 0:5½ �;
U kð Þ ¼ 2 � u kð Þ;

yk ¼ 0:3yk�1 þ 0:05yk�1
Pn�1

i yk�i�1
� �þ 1:5uk�nþ1uk þ 0:1

ð4Þ

Different n values represent different correlations.
Our new model is designed for pattern classification
tasks that need strong nonlinear mapping ability;
therefore, it sacrifices a certain memory capacity in this
special RC framework. We choose n= 1, which indi-
cates that the current input is only associated with the
last previous response. For the regularization, training,
and testing of the dynamic system modeling task, we
used two samples with a length of 300 points as the
dataset, one for the training and one for the testing. To
calculate the memory capacity of the RC system, we
calculated our output signal error using the NMSE,
which is defined as follows:

NMSE ¼
Pm

k¼1

P
i2O pi kð Þ � yi kð Þð Þ2

Pm
k¼1

P
i2O y2i kð Þ ð5Þ

where p(k) is the predicted signal, y(k) is the original
signal, and m is the number of time steps in the target
function.

Readout function training via ridge regression
The reservoir readout layer was constructed by a linear

regression algorithm. We chose ridge regression with
Tikhonov regularization to prevent data from overflowing
during training and adjusted the weights to minimize the
mean squared error between y and yt.

y tð Þ ¼ wTx tð Þ;
w ¼ ytX

T ðXXT þ λIÞ�1 ; ð6Þ

where w is a vector of weights, yt is the target vector, X is
the data matrix that contains y(t) and x(t), and λ is the
regularization coefficient.
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